Convexity and a sum-product type estimate

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An explicit sum-product estimate in Fp

Let Fp be the field of residue classes modulo a prime number p and let A be a non-empty subset of Fp. In this paper we give an explicit version of the sum-product estimate of Bourgain, Katz, Tao and Bourgain, Glibichuk, Konyagin on the size of max{|A+A|, |AA|}. In particular, our result implies that if 1 < |A| ≤ p7/13(log p)−4/13, then max{|A + A|, |AA|} ≫ |A|15/14 (log |A|)2/7 . 2000 Mathemati...

متن کامل

Szemerédi-Trotter type theorem and sum-product estimate in finite fields

We study a Szemerédi-Trotter type theorem in finite fields. We then use this theorem to obtain an improved sum-product estimate in finite fields.

متن کامل

The Sum-product Estimate for Large Subsets of Prime Fields

Let Fp be the field of prime order p. It is known that for any integer N ∈ [1, p] one can construct a subset A ⊂ Fp with |A| = N such that max{|A+ A|, |AA|} p|A|. One of the results of the present paper implies that if A ⊂ Fp with |A| > p2/3, then max{|A+ A|, |AA|} p|A|.

متن کامل

Sum of Squares and Polynomial Convexity

The notion of sos-convexity has recently been proposed as a tractable sufficient condition for convexity of polynomials based on sum of squares decomposition. A multivariate polynomial p(x) = p(x1, . . . , xn) is said to be sos-convex if its Hessian H(x) can be factored as H(x) = M (x) M (x) with a possibly nonsquare polynomial matrix M(x). It turns out that one can reduce the problem of decidi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2012

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa156-3-3